6 research outputs found

    Quantum and stochastic processes

    Get PDF

    Quantum Pascal's triangle and Sierpinski's carpet

    Get PDF
    In this paper we consider a quantum version of Pascal's triangle. Pascal's triangle is a well-known triangular array of numbers and when these numbers are plotted modulo 2, a fractal known as the Sierpinski triangle appears. We first prove the appearance of more general fractals when Pascal's triangle is considered modulo prime powers. The numbers in Pascal's triangle can be obtained by scaling the probabilities of the simple symmetric random walk on the line. In this paper we consider a quantum version of Pascal's triangle by replacing the random walk by the quantum walk known as the Hadamard walk. We show that when the amplitudes of the Hadamard walk are scaled to become integers and plotted m

    Bounding quantum-classical separations for classes of nonlocal games

    Get PDF
    We bound separations between the entangled and classical values for several classes of nonlocal t-player games. Our motivating question is whether there is a family of t-player XOR games for which the entangled bias is 1 but for which the classical bias goes down to 0, for fixed t. Answering this question would have important consequences in the study of multi-party communication complexity, as a positive answer would imply an unbounded separation between randomized communication complexity with and without entanglement. Our contribution to answering the question is identifying several general classes of games for which the classical bias can not go to zero when the entangled bias stays above a constant threshold. This rules out the possibility of using these games to answer our motivating question. A previously studied set of XOR games, known not to give a positive answer to the question, are those for which there is a quantum strategy that attains value 1 using a so-called Schmidt state. We generalize this class to mod-m games and show that their classical value is always at least 1/m + (m-1)/m t^{1-t}. Secondly, for free XOR games, in which the input distribution is of product form, we show beta(G) >= beta^*(G)^{2^t} where beta(G) and beta^*(G) are the classical and entangled biases of the game respectively. We also introduce so-called line games, an example of which is a slight modification of the Magic Square game, and show that they can not give a positive answer to the question either. Finally we look at two-player unique games and show that if the entangled value is 1-epsilon then the classical value is at least 1-O(sqrt{epsilon log k}) where k is the number of outputs in the game. Our proofs use semidefinite-programming techniques, the Gowers inverse theorem and hypergraph norms

    Bounding quantum-classical separations for classes of nonlocal games

    Get PDF
    We bound separations between the entangled and classical values for several classes of nonlocal t-player games. Our motivating question is whether there is a family of t-player XOR games for which the entangled bias is 1 but for which the classical bias goes down to 0, for fixed t. Answering this question would have important consequences in the study of multi-party communication complexity, as a positive answer would imply an unbounded separation between randomized communication complexity with and without entanglement. Our contribution to answering the question is identifying several general classes of games for which the classical bias can not go to zero when the entangled bias stays above a constant threshold. This rules out the possibility of using these games to answer our motivating question. A previously studied set of XOR games, known not to give a positive answer to the question, are those for which there is a quantum strategy that attains value 1 using a so-called Schmidt state. We generalize this class to mod-m games and show that their classical value is always at least 1m+m−1mt1−t. Secondly, for free XOR games, in which the input distribution is of product form, we show β(G)≥β∗(G)2t where β(G) and β∗(G) are the classical and entangled biases of the game respectively. We also introduce so-called line games, an example of which is a slight modification of the Magic Square game, and show that they can not give a positive answer to the question either. Finally we look at two-player unique games and show that if the entangled value is 1−ϵ then the classical value is at least 1−O(√ϵlogk) where k is the number of outputs in the game. Our proofs use semidefinite-programming techniques, the Gowers inverse theorem and hypergraph norms

    Bulk

    No full text

    Switch chain mixing times and triangle counts in simple random graphs with given degrees

    No full text
    Sampling uniform simple graphs with power-law degree distributions with degree exponent τ∈(2,3) is a non-trivial problem. Firstly, we propose a method to sample uniform simple graphs that uses a constrained version of the configuration model together with a Markov Chain switching method. We test the convergence of this algorithm numerically in the context of the presence of small subgraphs and we estimate the mixing time to be at most O(n log2 n)⁠. Secondly, we compare the number of triangles in uniform random graphs with the number of triangles in the erased configuration model where double edges and self-loops of the configuration model are removed. Using simulations and heuristic arguments, we conjecture that the number of triangles in the erased configuration model is larger than the number of triangles in the uniform random graph, provided that the graph is sufficiently large. Lastly, we argue that certain switch-chain-based proof methods can not be used in the regime τ∈(2,3) due to the possibility of creating m
    corecore